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ABSTRACT

General formulae for the higher order derivatives of the
energy with respect to the internuclear separation of a diatomic
molecule are derived from the Hellmann Feynman theorem and the
Integral Hellmann Feynman theorem. The phenomenon of the can-
cellation of terms involving the charge density and its deriva-
tives, which has been observed for the second order derivative
by Salem, is shown to prevail for third and higher order deriva-
tives. On this basis an approximate working formula is suggested.
A new condition under which an approximate wave function satisfies
the Hellmann Feynman theorem rigorously is given. With such an
approximate wave function, the formulae for the general deriva-

tives of the energy derived are also shown to be valid.
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1. INTRODUCTION
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internuciear separation of the diatomic molecule, are the important

The derivatives, E; where R, is the equilibrium

physical constants in connectiocn with molecular vibration. For

. e e s w o, ) .
instance, E is the binding energy, E 1is zero, E is

. 3) . .
the quadratic force constant, and E: is the cubic force constant.
The usual treatments of the derivatives make use of the
1-4 . 5
Hellmann Feynman theorem, the perturbation theory , or the
. . 6
quantum mechanical virial theorem. Our present derivations of

(19
the general formulae of E ) are based on the Hellmann Feynman

1 7,8,9
theorem™ and the Integral Hellmann Feynman theorem ’ 7.
«) . 4
A general formula of ¥ was given recently by Schwendeman

through the successive differentiation of the Hellmann Feynman
theorem, by use of the bedy fixed coordinate system on one of the
atoms. His final form10 contains the derivative of the charge

density with respect to the nuclear displacement. In the differentia-
tion, the position vector of the observation point with respect to

the atom is held constant.

In the present work, we employ the space fixed coordinate
system in which cne of the atoms is fixed. As a result one can
visualize the relative importance of the various terms involved
so that one can get more insight, especially when one seeks an

approximate ferm.



In Sec. 1II, the derivations are given by use of the expansion

of the integral of the t -)‘-F A. in the power i
iteg e type a (x)aT1 p series
, , 11

of the nuclear displacement due to Bingel.

In Sec. III, we discuss the cancellation between the terms
involving the density and its derivatives. The emphasis is placed

3) , . .

on |2 and an approximate form is suggested. In addition,
we present the new prescription of "a stable wave function'" by
use of the Integral Hellmann Feynman theorem.

IT. FORMAL DERIVATION

A. The Electrcstatic Approach

According to the Hellmann Feynman theorem,

de 2H | —
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the force acting on the nucleus A of the diatomic molecule, due
to the other nucleus B and the surrounding electronic charges,
is given by
de jAN g 2 |
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where kA and ?h are the nuclear charges of the atoms A and B,

and F(L;ZA) is the first order density normalized to N, the

total number of electrons (see Fig. 1).




It should be emphasized that the nucleus B is fixed to the
coordinate frame which itseif is fixed in space.

We are interested in the higher order derivatives of the
energy with respect to the internuclear separation at the equili-
brium configuraticn, R = RO. From the successive differentiation

of both sides of the Eq. (2), one has
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where F‘&; is deflned by
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It can be shown11 that, for an arbitrary function ,
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Thus, one obtalns
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where EW) is the q-th derivative of the delta function ~,

f.
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The first three derivatives are
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Eq. (12) is the Salem's fort‘nula3 for the quadratic force constant.

B. The Integral Hellmann Feynman Theorem

Suppose that:

H-8Y2% =0 , (14)
a2Hd = H-H,

(16)




The sum of the all orders of the perturbation energies, due to

the perturbation 2H may be written by the Integral Hellmann

Feynman theoren‘,7’899
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where the last equality is based on the coordinate system given in

Fig. 1. The integration is over the space of the electron 1, and
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which we shall call the transition density hereafter. ©Now from

Eq. (17), the derivatLv%;maj be written by el
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Through a manipulation similar to that presented in A, one obtains
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For K=} s, Eq. (21) gives Eq. (11), and for K=2 and 3 one has
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III. Discussion

Suppose that 3,4

(“ Cm—@ ‘r(’y (24)
where (i) the PA is the part of F which is spherical around
the nucleus A and follows rigidly A without deformation,
and (ii) the eB is the corresponding density which follows
B and in addition, vanishes in the vicinity of A and at the left
of A at the equilibrium separation (see Fig. 1), and (iii) the G
is the rest of P . Now the PA does not contribute to the force
tic)

according to Eq. (2) and consequently does not contribute to E

for any k. Also, for the coordinate system given Fig. 1,
Sﬁ(ﬁ)ztz‘:’ ee &T 0 for an arbitrary function h(r), and

6(’) (Je, (’em— ‘2 o= 0.

For instance, from Eqs. (12) and (13),
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where Eqs. (25) and {27) are originally due to Salem3.
From Eqs. (i2) and (13), one can say that there is an extensive
cancellation between terms involving the charge density and its

derivativesl6. In fact thz recent calculation of E(B) of the

H2 molecule by Benston et. al. shows17
(-5.i2) ( 3.41)
Now from Eq. (9), one can write
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where Q‘:) contains only P, . For example,
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A possible approximation may be to neglect entirely,ls’?"4 thus
3

k)

E = eu“m%%ﬂ - €U 1T, Sfr_‘%’l Bl dT

= 1, U\?WH [ Y- gd’f\:u\f]

If this is done, however, the following contradictions occur:

(33

(41
(a) B # 0 even when Ro is the equilibrium separation unless
©) .
= which means 100% ing.
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(b) It was shown that empiriéally3 one has
t27_= LURO) o7
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where a‘A is the nuclear electric quadrupole coupling constant,




but it is als»n known that the mcst important contribution to

a
comes from ‘P; dersity centered at the atom A if one uses

«
molecular orbital descriptionlga However, ?; belongs to e"’)

which Eq. {33) neglects.

(c) The ratio of the electronic and the nuclear charge con-
tKl

K)
tributions to E‘ is given, according to Eq. (33), by—— Em,— tonaindt—

N
. . . 4 .
~which is not realistic, as Schwendeman pointed out.

(x)
A compromise may be to neglect QD and retain the integral

P\\'(“"'B (’9 )A—r in Eq. (30) gvivi.ngzo
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For K=\ , Eq. (35) is exact. For W=2 , one has 72 .TA iA*-
For =3 , one has
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With the Wang function ( R, = .4t , the orbital exponent

?—;l,[;‘? according to ref.21), Eq.(36) gives
3),
E = —/-3157 + ollt = -1l2((a.u.) (%UJ,: ~/.30 a.u.) (37 )

for the HZ molecula (see Eq. (29) for comparison).

Although the plausibility of the approximation given by Eq.
(36) -(or in general Eq. (35)) is subjected to further numerical
checks, at this point howiever one may conjecture Eq. (36) as (approxi-
mate) working formula for E(3).
Now it may be instructive to note that the part of the transi-

tion density which is symmetrical with respect to the plane passing

Z, .
(0,0, —2 ) and perpendicular to the internuclear axis, say 0;

2 b




does not contribute to the energy change according to Eq. (17).
Therefore E(K)does not include any contribution from 0; .
Furthermore the part of @& which dces not change, say O'B
gives 6;"’_,_0’;%", = 0 . For such part of the transition

- Paiurd) . tw)
density, then the integral S hv,m er U;)JT:D va' K| . In

fact, for an infinitesimal change of the internuclear separation,
one sees that d;._,eq and g ‘)FB . However, since the tran-
sition density is defined only after description of the molecular
wave function is given, it may not meaningful physically as the
ordinary charge density p

It is known that the Hellmann Feynman theorem given by Eq. (1),
upon which the present derivation of Eq. (9) is based is highly
sensitive to the error in wave function employed. Indeed, with the
variational wave function i , which satisfies <le—-ﬁl%>=O,
the correct expression is - -

%%c (i(%{-l%}+[<ilm%§>+ (%‘%—\ngﬂ (38)
where the term with the square bracket [ ] does not
vanish in general. The prescription of the '"stable wave functionlz"

which, by definition, satisfies

a Al oM o
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is well summarized by Schwendeman4. Thus avoiding the further dis-
cussion on this matter here, we just like to give a new prescription
of a stable function in the following.

75

From Eq. (17), which is the Integral Hellmann Feynman theorem

8,9



10
one can derive the Hellmznn Feynman theorem, without employing

the condition22 (H‘g)Eﬁ(Ha’Eb)§°=0' Therefore one can say that
if ,,>

= K ’Ho‘ é

»__€§01= <?§lH i o

€ EIERD (40)

~

then Eq. (39) is rigorously valid, or i.e., that & is a

. ' . 9
stable wave function. Actually, Epstein” found that if the
» 3 . (‘)
variational wave functions i; and '§° are made of a common
basis set, then Eq. (40) is satisfied. Furthermore, it is now
apparent that Eq. (21) is also the rigorous representation of

if Eg. (40) is satisfied.
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